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Abstract— This paper focuses on the design of non-orthogonal
multiple access in a classical two-transmitter two-receiver
Z-channel, wherein one transmitter sends information to its
intended receiver from the direct link while the other transmitter
sends information to both receivers from the direct and cross
links. Unlike most existing designs using (continuous) Gaussian
input distribution, we consider the practical finite-alphabet (i.e.,
discrete) inputs by assuming that the widely used quadrature
amplitude modulation constellations are adopted by both trans-
mitters. To balance the error performance of two receivers,
we apply the max–min fairness design criterion in this paper.
More specifically, we propose to jointly optimize the scaling fac-
tors at both transmitters, which control the minimum Euclidean
distance of transmitting constellations, to maximize the smaller
minimum Euclidean distance of two resulting constellations at the
receivers, subject to an individual average power constraint at
each transmitter. The formulated problem is a mixed continuous-
discrete optimization problem and is thus intractable in general.
By resorting to the Farey sequence, we manage to attain the
closed-form expression for the optimal solution to the formulated
problem. This is achieved by dividing the overall feasible region
of the original optimization problem into a finite number of
sub-intervals and deriving the optimal solution in each sub-
interval. Through carefully observing the structure of the optimal
solutions in all sub-intervals, we obtain compact and closed-form
expressions for the optimal solutions to the original problem
in three possible scenarios defined by the relative strength of
the cross link. Simulation studies are provided to validate our
analysis and demonstrate the merits of the proposed design over
existing orthogonal or non-orthogonal schemes.

Index Terms— Non-orthogonal multiple access (NOMA),
Z-channel, finite-alphabet inputs, quadrature amplitude modu-
lation, max-min fairness, Farey sequence.
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I. INTRODUCTION

MULTIPLE access technologies have been playing an
important role in determining the performance of

each generation of mobile communication systems. Based
on how the resources are allocated to users, multiple access
technologies can generally be categorized into two types:
orthogonal multiple access (OMA) and non-orthogonal mul-
tiple access (NOMA) [1, Ch. 6]. The current generation of
cellular networks, known as 4G, and all previous genera-
tions have primarily adopted the OMA technologies, which
include frequency-division multiple access (FDMA) for 1G,
time-division multiple access (TDMA) for 2G, code-division
multiple access (CDMA) for 3G, and orthogonal frequency-
division multiple access (OFDMA) for 4G [2]. In these OMA
schemes, the resource is partitioned into orthogonal blocks
in time/frequency/code domain, and each resource block is
then assigned to one single user exclusively. In this sense,
there is no inter-user interference in OMA, leading to low-
complexity receiver and scheduling algorithms. Moreover,
after the resource allocation, the multiple-user problem is
divided into several point-to-point problems such that the
well-established single-user encoder/decoder techniques can
be directly applied. However, early information-theoretic stud-
ies showed that compared with NOMA, OMA has lower
spectral efficiency as it normally cannot achieve the multi-
user channel capacity region [3]. Besides, OMA is not scal-
able as the total number of orthogonal resources and their
granularity strictly limit the maximum number of served
users.

Different from OMA, NOMA exploits the power domain to
multiplex multiple users together such that they can be served
in the same time/frequency/code resources [2]–[6]. As such,
with proper multi-user detection techniques to deal with the
inter-user interference at the receiver side (e.g., successive
interference cancellation (SIC) [7]), NOMA is capable of
achieving improved spectral efficiency and serving much more
users simultaneously. In fact, the uplink and downlink versions
of NOMA, well-known as multiple access channel (MAC) and
broadcast channel (BC) respectively, have been intensively
investigated for several decades in the information theory
community, see, e.g., [8]–[11]. However, due to the high
complexity of interference cancellation, these studies mainly
lied in the theoretical aspects and their results were not
implemented in practical communication systems. With the
fast advances of hardware, the implementation of NOMA
with interference cancellation becomes more affordable and
feasible. Actually, NOMA has been regarded as a key enabling
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technology to meet the unprecedented requirements of 5G
wireless networks due to its significant network throughput
gain and great potential to support massive connectivity, low
latency and user fairness [2], [5], [7], [12]–[17]. Furthermore,
a two-user downlink scenario of NOMA, termed multiuser
superposition transmission (MUST), has been incorporated in
the 3rd Generation Partnership Project (3GPP) Long Term
Evolution-Advanced (LTE-A) [18], [19].

Most conventional information-theoretic and recent studies
on NOMA adopted the assumption of Gaussian input dis-
tribution [5], [8], [9], [20]–[25]. Although the designs with
Gaussian signaling can approach most of the known capacity
inner bounds, such as in [8]–[11], their direct implementation
in practical communication systems may lead to significant
performance loss [26]. Moreover, Gaussian signaling will
require unaffordable encoding and decoding efforts, which
could lead to extremely high hardware cost, huge storage capa-
bility, high computational complexity, and long delay. There-
fore, Gaussian inputs could arguably be infeasible for current
hardware and it acts mostly as the theoretical benchmark. The
inputs of practical wireless systems are actually drawn from
finite constellations, such as phase shift keying (PSK) mod-
ulation or quadrature amplitude modulation (QAM), which
are essentially different from the continuous Gaussian inputs.
When it comes to a NOMA system with finite input constella-
tions, the key design challenge is to guarantee that each user’s
codeword can be uniquely decoded from their sum signal at
the receiver side [27]–[29]. For the two-user MAC with finite-
alphabet inputs, a constellation rotation (CR) scheme and a
constellation power allocation (CPA) scheme were proposed
in [30] and [31] to construct an unambiguous sum constellation
at the receiver, respectively. This is achieved by strategically
introducing certain angle of rotation between the input con-
stellations in the CR scheme and appropriately controlling the
transmit power of each user in the CPA scheme. The results
in [30] and [31] have been extended to various multiple-
antenna scenarios, see, e.g., [32] and references therein. The
aforementioned NOMA designs were primarily for the PSK
modulations by utilizing its circular structure. The studies
on NOMA with QAM, another practical modulation scheme
that has been widely adopted in cellular systems due to its
higher spectral efficiency, are quite limited. Very recently,
the mutual information were used as the performance metric
to optimize NOMA systems with QAM in [33] and [34].
However, the optimal NOMA designs in [33] and [34] were
achieved by numerical approaches with high computational
complexities.

We also notice that the existing studies on NOMA mainly
focused on MAC and BC, due to their wide applications
in centralized systems like cellular networks. Also there are
some initial efforts considering the NOMA design for the
interference channel (IC) [3]. With recent advances in non-
centralized networks (e.g., wireless sensor networks and ad
hoc networks), Z-channel (ZC) was proposed in [35] and
attracted considerable attention in the past decade [36]–[42].
As a special case of the classical two-user IC [43], a two-user
ZC consists of two transmitters and two receivers, wherein
one transmitter sends information to its intended receiver from

the direct link without causing interference to the unintended
receiver, while the other transmitter sends information to
both receivers from the direct and cross links. In this sense,
the ZC is a general channel model that includes MAC and
BC as special cases. The ZC is also closely related to the
Z-interference channel (ZIC) [44]–[47], wherein each trans-
mitter transmits information to its corresponding receiver only
from the direct link and the received signal from the cross
link carries no desired information, and thus is treated as
interference at the receiver side. It is also worth emphasizing
that there are two messages transmitted from the two direct
links in ZIC, while three messages are sent via the two direct
links and the cross link in ZC. Both ZC and ZIC are proper
models for the multi-cell downlink transmission, where one
user is located near to the cell edge and thus can receive
signals from both transmitters, while the other user is near
the cell center and suffers from no interference. Another
example corresponds to the two-user IC, where one cross
link is blocked by obstacles with large pathloss such as tall
buildings or thick walls, while the other user is still exposed to
interference [45], [48]. Despite of the existing great efforts on
ZC, to our best knowledge, the design of NOMA with practical
finite-alphabet inputs in ZC is still an open problem in the
literature.

Motivated by this gap, in this paper we concentrate on the
practical design of NOMA with QAM in a two-transmitter
two-receiver ZC. It is worth emphasizing that the design of
NOMA with QAM is much more challenging than that for
PSK modulation. This is mainly because the unambiguity of
sum QAM constellations is much harder to maintain since its
signal points are distributed more evenly and there is a higher
probability that more than one signal points coincide or close
to each other on the sum constellation. The main contributions
of this paper can be summarized as follows:

1) We, for the first time, develop a practical NOMA
framework with QAM and max-min fairness in ZC.
In our framework, we optimize the scaling factors of
both transmitters, which adjust the minimum Euclidean
distance of the transmitting constellations, to maximize
the smaller minimum Euclidean distance among the
resulting constellations at both receivers subject to an
individual power constraint on each transmitter. Through
our design, the average error performance of both trans-
mitters in the considered ZC can be minimized with
good user fairness, which is fundamentally different
from the existing designs that mainly focused on the
channel capacity maximization.

2) The formulated optimization problem is shown as a
mixed continuous-discrete optimization problem, which
is challenging to solve in general. By carefully observing
the features of the formulated problem, we realize that
the Farey sequence (also known as Farey series) [49]
can be applied to resolve the problem. More specifically,
by taking the advantage of Farey sequence associated
with the finite-alphabet, we strategically partition the
entire feasible region of the original optimization prob-
lem into a finite number of sub-intervals and attain the
closed-form solution in each sub-interval. Then, by a
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Fig. 1. (a) Two-user complex Gaussian ZC. (b) Two-user real Gaussian ZC.

careful observation on the structure of the solutions in
all sub-intervals, the overall solution is obtained in a
compact closed-form for three complementary scenarios
divided by the relative strength of the cross link.

3) We verify the correctness of the analytical results by
conducting simulations in both deterministic and random
fading channels. Simulation results show that the sum
constellation at the receiver side is still a regular QAM
constellation with a larger size for most scenarios, but
could be a hierarchical QAM with two-resolution [50],
e.g., when the cross link is very strong relative to the
direct link. We adopt the bit error rate (BER) as the
performance metric to compare the proposed NOMA
design with the existing OMA and NOMA schemes
under random fading channels. The comparison illus-
trates that our scheme can achieve a significant lower
BER performance than the benchmark schemes, which
validates the effectiveness of our design.

II. SYSTEM MODEL OF COMPLEX GAUSSIAN ZC
WITH QAM CONSTELLATIONS

We consider a two-user complex Gaussian ZC consisting
of two transmitters S1 and S2, and two receivers D1 and
D2, as depicted in Fig. 1(a). We consider that each node is
equipped with a single antenna and works in a half-duplex
mode. As per the ZC, only the cross link between S2 and D1
is assumed to be available. Moreover, S1 sends one unicasting
message x1 to D1, while S2 transmits one multicasting
message x2 to both D1 and D2. S1 and S2 transmit their
messages simultaneously using the same frequency band. The
equivalent complex baseband signals observed at D1 and D2
can be given, respectively, by the following equations:

z1 = h11x1 + h21x2 + ξ1, (1a)

z2 = h22x2 + ξ2, (1b)

where hk� ∈ C, k, � ∈ {1, 2} denotes the complex channel
coefficients from transmitter Sk to receiver D�. Hereafter,
we call h11 and h22 the direct links, while h21 is referred to as
the cross link. In line with [35]–[39], [41], [42], and [45], all
the channel links are assumed to be known perfectly at all the
terminals. The additive noise processes ξ1, ξ2 ∼ CN (0, 2σ 2)
are independent and identically distributed (i.i.d.) over
time and are assumed to be circularly symmetric complex
Gaussian (CSCG). Note that the case with different noise
levels at receivers can be incorporated into our model by
scaling operations. We suppose that QAM constellations
are used by both transmitters since it is more spectrally

efficient than other frequently-used modulation schemes
such as phase-shift keying (PSK), and is also relatively
easy to implement [51, Ch. 5.3.3]. A predefined average
transmitted power constraint is imposed to both transmitters,1

i.e., E[|x1|2] ≤ P1 and E[|x2|2] ≤ P2. In this paper,
the system signal-to-noise ratio (SNR) is defined by ρ = 1

2σ 2 .
For analytical simplicity, we decompose the considered

complex Gaussian ZC given in (1) into two parallel real
scalar Gaussian ZCs [35], [36], [45], which are called the
in-phase and quadrature components, respectively. We note
that this method was commonly used in the study of IC
and the real IC was studied directly in [48] and [52]–[54].
Actually, designing two-dimensional QAM constellations is an
extremely challenging problem even for two-user MAC, see
e.g., [30], [31], and references therein. In this paper, instead
of designing the two-dimensional QAM constellations directly,
we propose a practical design that decomposes the complex
Gaussian ZC into two parallel real scalar Gaussian ZCs such
that we can split the two-dimensional QAM constellation into
two one-dimensional PAM constellations. In fact, although
we use complex baseband representation in (1), the actual
modulated and demodulated signals are all real since the
oscillator at the transmitter can only generate real sinu-
soids rather than complex exponentials, and the channel just
introduces amplitude and phase distortion to the transmitted
signals [51, Ch. 2.2]. By this means, the original two-
dimensional QAM constellation can be split into two one-
dimensional pulse amplitude modulation (PAM) constellations
for both the in-phase and quadrature components. Mathemat-
ically, for the complex Gaussian ZC described in (1), the in-
phase and quadrature components can be attained by rotating
x1 and x2 according to the instantaneous channel coefficients
to compensate for the phase offset, and then taking the real
and imaginary parts, respectively. First of all, we note that (1)
is equivalent to

z1 = |h11| exp( j arg(h11))x1 + |h21| exp

× ( j arg(h21))x2 + ξ1

exp
(

j arg
(h21

h22

))
z2 = |h22| exp( j arg(h21))x2

+ exp
(

j arg
(h21

h22

))
ξ2. (2)

Now, we set

y1 = Re(z1), y2 = Re
(

exp( j arg
(h21

h22

)
)z2

)
, (3a)

w1s1 = Re
(

exp( j arg(h11))x1
)
, (3b)

w2s2 = Re
(

exp( j arg(h21))x2
)
, (3c)

n1 = Re(ξ1), n2 = Re
(

exp( j arg
(h21

h22

)
)ξ2

); (3d)

y ′
1 = Im(z1), y ′

2 = Im
(

exp( j arg
(h21

h22

)
)z2

)
, (3e)

w′
1s′

1 = Im
(

exp( j arg(h11))x1
)
, (3f)

w′
2s′

2 = Im
(

exp( j arg(h21))x2
)
, (3g)

1Our design can also be generalized to the case with peak power constraint
straightforwardly.
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n′
1 = Im(ξ1), n′

2 = Im
(

exp( j arg
(h21

h22

)
)ξ2

)
, (3h)

where Re(·) and Im(·) are the real and imaginary parts of the
complex number, respectively. We also assume that s1 ∈ AM1 ,
s′

1 ∈ AM ′
1
, sent by S1, and s2 ∈ AM2 , s′

2 ∈ AM ′
2
, transmit-

ted by S2, are the information-bearing symbols, which are
drawn from standard PAM constellation with equal probability,
in which AM � {± (2k−1)}M/2

k=1 is a M-ary PAM constellation
set. Moreover, the scaling factors w1, w2, w′

1, and w′
2 are

real positive scalars that determine the minimum Euclidean
distance of the corresponding PAM constellation set.

From (3), we obtain exp
(

j arg(h11)
)
x1 = (w1 s1+w′

1s′
1 j) ∈

Q1 and exp
(

j arg(h21)
)
x2 = (w2 s2 + w′

2s′
2 j) ∈ Q2, where

Q1 � {±w1(2k − 1) ± w′
1(2� − 1) j :

k = 1, . . . , M1/2, � = 1, . . . , M ′
1/2}, (4a)

Q2 � {±w2(2k − 1) ± w′
2(2� − 1) j :

k = 1, . . . , M2/2, � = 1, . . . , M ′
2/2}, (4b)

are M1 M ′
1- and M2 M ′

2-ary QAM constellations, respectively.
If w1 = w′

1 and w2 = w′
2, we call Q1 and Q2 symmetric QAM

constellations. Otherwise, we are using unsymmetric signal-
ing [45], [48], [55]. In addition, n1, n2, n′

1, n′
2 ∼ N (0, σ 2)

are i.i.d. real additive white Gaussian since the complex noise
terms are assumed to be CSCG. Then, the in-phase and
quadrature sub-channels of (1), as illustrated in Fig. 1(b), can
be reformulated by

y1 = |h11|w1s1 + |h21|w2s2 + n1,

y2 = |h22|w2s2 + n2, (5a)

y ′
1 = |h11|w′

1s′
1 + |h21|w′

2s′
2 + n′

1,

y ′
2 = |h22|w′

2s′
2 + n′

2. (5b)

The transmitted signals over both subchannels should still be
subject to average power constraints, i.e., E[w2

1|s1|2] ≤ p1,
E[w2

2 |s2|2] ≤ p2, E[w′2
1 |s′

1|2] ≤ p′
1, E[w′2

2 |s′
2|2] ≤ p′

2 such
that p1 + p′

1 = P1 and p2 + p′
2 = P2. The following power

allocation among the in-phase and quadrature components
is normally performed to balance the minimum Euclidean
distance of the two PAM constellations [51, Ch. 6.1.4], i.e.,

p1 = (M2
1 − 1)P1

M2
1 + M ′2

1 − 2
, p2 = (M2

2 − 1)P2

M2
2 + M ′2

2 − 2
, (6a)

p′
1 = (M ′2

1 − 1)P1

M2
1 + M ′2

1 − 2
, p′

2 = (M ′2
2 − 1)P2

M2
2 + M ′2

2 − 2
. (6b)

It can be observed that, if square-QAM constellations are used
at both transmitters with M1 = M ′

1 and M2 = M ′
2, we have

p1 = p′
1 = P1/2 and p2 = p′

2 = P2/2.
An important problem for the considered ZC is that for

any given QAM constellation sizes of both messages, how
to optimize the values of scaling coefficients w1, w2, w′

1
and w′

2 to minimize the average error probability at both
receivers, subject to the individual average power constraint
at both transmitters. By leveraging the decomposable property
of the complex Gaussian ZC and the symmetry of the two
subchannels, we can simply focus on the design for one of

the two real Gaussian ZCs with PAM constellation sets, which
will be elaborated in the next section.2

III. THE CONSTELLATION DESIGN FOR THE

REAL GAUSSIAN ZC

In this section, we consider the constellation design prob-
lem, i.e., finding the optimal values of w1 and w2 for the
in-phase real Gaussian ZC characterized by (5a). The optimal
solution to the quadrature component can be obtained in a
similar fashion and hence omitted for brevity. In particular,
if M1 = M ′

1 and M2 = M ′
2, then the two sub-channels are

identical. It is worth noting that, similar design for BC or MAC
can be included as a special case of our proposed design for
the considered ZC.

A. Problem Formulation

As the first effort towards the design of NOMA with finite-
alphabet inputs in ZC, in this paper we concentrate on the
case that M1 = M2 = M and M ′

1 = M ′
2 = M ′. As a result,

we have s1, s2 ∈ AM = {± (2k − 1)}M/2
k=1 . As E[w2

1|s1|2] ≤ p1

and E[w2
2 |s2|2] ≤ p2, we thus have 0 < w1 ≤

√
3 p1

M2−1
and

0 < w2 ≤
√

3 p2
M2−1

.
In our scheme, the transmitted signal from S1 and S2 are

superimposed together at D1, which is inherently a non-
orthogonal transmission. In line with [36], we use a joint
decoding3 at the receiver D1 since the error performance
is dominated by the minimum Euclidean of the resulting
sum-constellation at D1. We assume that each receiver uses
a coherent maximum-likelihood (ML) detector to estimate
the transmitted signals in a symbol-by-symbol fashion.4 For
receivers D1 and D2, the estimated signals can be expressed as

(ŝ1, ŝ2) = arg min
(s1,s2)

∣∣y1 − (|h11|w1 s1 + |h21|w2 s2)
∣∣,

ŝ′
2 = arg min

s2

∣∣y2 − |h22|w2 s2
∣∣.

By applying the nearest neighbor approximation
method [51, Ch. 6.1.4] at high SNRs for the ML receiver,
the average error rate is dominated by the minimum Euclidean
distance of the received constellation points owing to the
exponential decaying of the Gaussian distribution. To balance
the error performance of both receivers, in this paper, we aim
to devise the optimal value of w1 and w2 by applying
the max-min fairness criterion on the minimum Euclidean

2It should be pointed out that this design is a practical but not necessarily
optimal approach, which has been widely adopted in practice [36], [45], [48],
[52]–[57].

3We note that, for ZIC, the joint decoder used by D1 may not necessarily
be the most efficient one. Instead, we should use a treat-interference-as-
noise (TIN) receiver when the channel gain of the cross link is very low and
use a successive-interference-cancellation (SIC) receiver when the channel
gain of cross link is very strong compared with the direct link [36], [43],
[44]. In general, a joint decoder can be used when the cross link is moderately
strong [36], [43], which will result in a similar design as our case. However,
how to extend our design to ZIC with finite-alphabet input is still an open
problem and has been left as a future work.

4Since we are doing a symbol-by-symbol detection, the decoding com-
plexity is O(M2) with M being the PAM constellation size of S1 and S2,
respectively. Although we can use the message passing algorithm (MPA) [58]
to further decrease the decoding complexity, however, our method is feasible.
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distance of the received signal constellation points among
both receivers.

The Euclidean distance between two received signals
y1(s1, s2) and y1(s̃1, s̃2) at D1 and that between y2(s2) and
y2(s̃2) at D2 for the transmitted signal vectors (s1, s2) and
(s̃1, s̃2) at S1 and S2 in the noise-free case are given, respec-
tively, by

|y1(s1, s2) − y1(s̃1, s̃2)| = ∣∣|h11|w1(s1 − s̃1)

− |h21|w2(s̃2 − s2)
∣∣, (7a)

|y2(s2) − y2(s̃2)| = |h22|w2|s2 − s̃2|. (7b)

Note that s1, s̃1, s2 and s̃2 are all odd numbers, and we thus
can let s1− s̃1 = 2 n and s̃2−s2 = 2 m, in which m, n ∈ ZM−1
with ZM−1 � {0,±1, . . . ,±M−1} denoting the set containing
all the possible differences. Similarly, we also define Z

2
M−1 �

{(a, b) : a, b ∈ ZM−1}, NM−1 � {0, 1, · · · , M − 1} and
N

2
M−1 � {(a, b) : a, b ∈ NM−1}. From the above definition,

(s1, s2) �= (s̃1, s̃2) is equivalent to (m, n) �= (0, 0). Here,
by (m, n) �= (0, 0), we mean that m �= 0 or n �= 0. To proceed,
we define

d1(m, n) = 1

2
|y1(s1, s2) − y1(s̃1, s̃2)|

= ∣∣|h11|w1 n − |h21|w2 m
∣∣,

for (m, n) ∈ Z
2
M−1 \ {(0, 0)},

d2(m) = 1

2
|y2(s2) − y2(s̃2)|

= |h22|w2|m|, for m ∈ ZM−1 \ {0}.
We are now ready to formally formulate the following max-

min optimization problem:
Problem 1 (Optimal Design of NOMA in Real Scalar ZC

With PAM Constellation): Find the optimal value of (w∗
1, w∗

2)
subject to the individual average power constraint such that the
minimum value of the minimum Euclidean distances of the
received signal constellation points over both received signals
is maximized, i.e.,

(w∗
1, w∗

2) = arg max
(w1,w2)

min
{

min
(m,n)∈Z

2
M−1\{(0,0)}

d1(m, n)

︸ ︷︷ ︸
T1

,

min
m∈ZM−1\{0}

d2(m)

︸ ︷︷ ︸
T2

}
(9a)

s.t. 0 < w1 ≤
√

3 p1

M2 − 1

and 0 < w2 ≤
√

3 p2

M2 − 1
. (9b)

�
Note that the inner optimization problem of finding the

minimum Euclidean distances is a discrete one, while the outer
optimization problem on (w1, w2) is a continuous problem.
In other words, Problem 1 is a mixed continuous-discrete
optimization problem and it is in general hard to solve. To the
best of our knowledge, only numerical solutions to such kind
of problems are available in the literature, see e.g., [30]–[32]
and references therein.

To optimally and systematically solve this problem, we now
develop a novel framework based on the Farey sequence
(also known as Farey series) [49], which can divide the
entire feasible region of (w1, w2) into a finite number of
mutually exclusive sub-intervals. Then for each sub-interval,
the formulated optimization problem can be solved optimally
with a closed-form solution, and subsequently the overall
maximum value of Problem 1 can be attained by taking the
maximum value of the objective function among all the sub-
intervals.

For the inner optimization problem of T2 given in (9a), it can
be observed that

min
m∈ZM−1\{0}

d2(m) = min
m∈ZM−1\{0}

|h22|w2|m|
= |h22|w2, with m = 1.

However, for T1, we have

min
(m,n)∈Z

2
M−1\{(0,0)}

d1(m, n)

= min
(m,n)∈Z

2
M−1\{(0,0)}

∣∣|h11|w1n − |h21|w2m
∣∣. (10)

We should point out that the closed-form solution to the
optimal (m, n) is not trivial, since the solution depends on
the values of |h11| and |h22|, which can span the whole
positive real axis. Moreover, the value of w1 and w2 can not
be determined beforehand. Actually, the problem in (10) is
essentially equivalent to finding a real rational number with
finite order to approximate a real irrational number as closely
as possible. This naturally leads us to resorting to the Farey
sequence, which particularly plays a critical role in solving
such kind of problems [49]. In the subsequent section, we will
introduce the definition and some important properties of Farey
sequence.

B. Farey Sequence

The Farey sequence characterizes the relationship between
two positive integers and the formal definition is given as
follows:

Definition 1 (Farey Sequence [49]): The Farey sequence
FK of order K is the ascending sequence of irreducible
fractions between 0 and 1 whose denominators are less
than or equal to K .

By the definition, FK = ( bk
ak

)|FK |
k=1 is a sequence of fractions

bk
ak

such that 0 ≤ bk ≤ ak ≤ K and 〈ak, bk〉 = 1 arranged in
an increasing order, where 〈a, b〉 denotes the largest common
divider of non-negative integers a, b. |FK | = 1 + ∑K

m=1 ϕ(m)
is the cardinality of FK with ϕ(·) being the Euler’s totient
function [49]. Some examples of Farey sequences are given
as follows:

Example 1: F5 is the ordered sequence
(0

1
,

1

5
,

1

4
,

1

3
,

2

5
,

1

2
,

3

5
,

2

3
,

3

4
,

4

5
,

1

1

)
.

It can be observed that each Farey sequence begins with
number 0 (fraction 0

1 ) and ends with 1 (fraction 1
1 ). The series

of breakpoints after 1
1 is the reciprocal version of the Farey

sequence. We call the Farey number sequence together with
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its reciprocal version as the extended Farey sequence which is
formally defined as follows:

Definition 2 (Extended Farey Sequence): The extended
Farey sequence SK of order K is the sequence of ascend-
ing irreducible fractions, where the maximum value of the
numerator and denominator do not exceed K .

From the definition, we have SK = ( bk
ak

)|SK |
k=1 with

〈ak, bk〉 = 1 and |SK | = 1 + 2
∑K

m=1 ϕ(m). We have the
following example:

Example 2: S5 is the sequence
(0

1
,

1

5
,

1

4
,

1

3
,

2

5
,

1

2
,

3

5
,

2

3
,

3

4
,

4

5
,

1

1
,

5

4
,

4

3
,

3

2
,

5

3
,

2

1
,

5

2
,

3

1
,

4

1
,

5

1
,

1

0

)
.

It can be observed that the extended Farey sequence starts with
number 0 (fraction 0

1 ) and end with ∞ (fraction 1
0 ).

The positive real axis can be divided by the extended
Farey sequence SK into a finite number (i.e., |SK | − 1 =
2

∑K
m=1 ϕ(m)) of intervals. In this paper, we call the fractions

consisting of adjacent terms in the extended Farey sequence
as a Farey pair, and the interval between the Farey pair is
referred to as a Farey interval. We then have the Farey interval
set formally defined as follows:

Definition 3 (Farey Interval Set): A Farey interval set SK

of order K is the set containing all the Farey inter-
vals generated by the Farey pair of the extended Farey
sequence SK .

By the definition, we have SK = {( bk
ak

,
bk+1
ak+1

)}|SK |
k=1, where

|SK | = |SK | − 1 = 2
∑K

m=1 ϕ(m). Note that, with a slight
abuse of notations,

( bk
ak

, bk+1
ak+1

)
denotes the interval between end

nodes bk
ak

and bk+1
ak+1

rather than a vector, and this will be clear
from the context.

Example 3: The Farey interval set S5 is the set given by
{(0

1
,

1

5

)
,
(1

5
,

1

4

)
,
(1

4
,

1

3

)
, . . . ,

(3

1
,

4

1

)
,
(4

1
,

5

1

)
,
(5

1
,

1

0

)}
.

The Farey interval set can be further divided into two

subsets UL
K = {( b′

k
a′

k
,

b′
k+1

a′
k+1

) ∈ SK : b′
k + b′

k+1 ≥ L} and V L
K =

{( b′′
k

a′′
k
,

b′′
k+1

a′′
k+1

) ∈ SK : b′′
k + b′′

k+1 < L} for L = 1, 2, . . . , 2K

such that SK = UL
K ∪ V L

K and UL
K ∩ V L

K = ∅. In particular,
U1

K = SK and V 1
K = ∅ while U2K

K = ∅ and V 2K
K = SK .

Example 4: For the Farey interval set S5, we have

U4
5 =

{(1

2
,

3

5

)
,
(3

5
,

2

3

)
,
(2

3
,

3

4

)
,
(3

4
,

4

5

)
,
(4

5
,

1

1

)
,

(1

1
,

5

4

)
,
(5

4
,

4

3

)
,
(4

3
,

3

2

)
,
(3

2
,

5

3

)
,
(5

3
,

2

1

)
,

(2

1
,

5

2

)
,
(5

2
,

3

1

)
,
(3

1
,

4

1

)
,
(4

1
,

5

1

)
,
(5

1
,

1

0

)}
,

and

V 4
5 =

{(0

1
,

1

5

)
,
(1

5
,

1

4

)
,
(1

4
,

1

3

)
,
(1

3
,

2

5

)
,
(2

5
,

1

2

)}
.

We now review some elementary properties of Farey
sequences [49] which are also true for extended Farey
sequences.

Property 1: If n1
m1

and n2
m2

are two adjacent terms (Farey
pairs) of SK with K ≥ 1, such that n1

m1
< n2

m2
, then,

1) m1 n2 − m2 n1 = 1.
2) n1+n2

m1+m2
∈ ( n1

m1
, n2

m2

)
, m1+m2

n1+n2
∈ (m2

n2
, m1

n1

)
. �

Property 2: If n1
m1

, n2
m2

and n3
m3

are three consecutive terms
of SK with K ≥ 1 such that n1

m1
< n2

m2
< n3

m3
, then, n2

m2
=

n1+n3
m1+m3

. �
Property 3: Given K ≥ 2, we assume n1

m1
, n2

m2
, n3

m3
, n4

m4
∈

SK and n1
m1

< n2
m2

< n3
m3

< n4
m4

. If n2
m2

and n3
m3

form one Farey
pair, then n1+n3

m1+m3
≤ n2

m2
and n3

m3
≤ n2+n4

m2+m4
. �

C. The Minimum Euclidean Distance of the
Received Signal Constellation Points

We are now ready to solve the problem in (10) to find
the constellation point pairs (m, n) that have the minimum
Euclidean distance. To that end, we first have the following
preliminary propositions.

Proposition 1: Let F2
K = {(m, n) : n

m ∈ SK }, where SK

is the extended Farey number sequence of order K , and then
we have

min
(m,n)∈Z

2
K \{(0,0)}

d1(m, n) = min
(m,n)∈F

2
K

d1(m, n).

�
The proof is given in Appendix-A.

Proposition 2: Consider the Farey interval
( n1

m1
, n2

m2

) ∈ SK ,

with K ≥ 1, and n1
m1

< n2
m2

. Then, for |h21|w2|h11|w1
∈ ( n1

m1
, n2

m2
) and

d1(m, n) = ∣∣|h11|w1 n − |h21|w2 m
∣∣, we have

1) If |h21|w2|h11|w1
= n1+n2

m1+m2
, then d1(m1, n1) = d1(m2, n2);

2) If |h21|w2|h11|w1
∈ ( n1

m1
, n1+n2

m1+m2

)
, then d1(m1, n1) < d1(m2, n2);

3) If |h21|w2|h11|w1
∈ ( n1+n2

m1+m2
, n2

m2

)
, then d1(m1, n1) > d1(m2, n2).

�
The proof can be found in Appendix-B.

Proposition 3: Consider n1
m1

, n2
m2

, n3
m3

, n4
m4

∈ SK , with K ≥
2, such that n1

m1
< n2

m2
< n3

m3
< n4

m4
where n2

m2
, n3

m3
form one

Farey pair,

1) If |h21|w2|h11|w1
∈ ( n2

m2
, n2+n3

m2+m3
), then

min
(m,n)∈F

2
M−1

d1(m, n) = d1(m2, n2)

= |h21|w2 m2 − |h11|w1 n2.

2) If |h21|w2|h11|w1
∈ ( n2+n3

m2+m3
, n3

m3
), then

min
(m,n)∈F

2
M−1

d1(m, n) = d1(m3, n3)

= |h11|w1 n3 − |h21|w2 m3.

�
The proof is provided in Appendix-C.

Proposition 4: For the Farey interval set SM−1 ={( bk
ak

,
bk+1
ak+1

)}|SM−1|
k=1 , if |h21||h22| ≥ bk +bk+1, then ak+1

bk+1
+ |h22|

bk+1|h21| ≤
ak+ak+1
bk+bk+1

≤ ak
bk

− |h22|
bk |h21| . �

The proof is given in Appendix-D.
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D. Optimal Solution to Problem 1 for |h21|w2|h11|w1
in Certain

Farey Interval
In this section, we solve Problem 1 by restricting |h21|w2|h11|w1

into a certain Farey interval where a closed-form solu-
tion is attainable. We consider the Farey interval set SM−1

given by SM−1 = {( bk
ak

,
bk+1
ak+1

)}|SM−1|
k=1 where |SM−1| =

2
∑M−1

m=1 ϕ(m). Now we consider the case |h21|w2|h11|w1
∈ ( bk

ak
,

bk+1
ak+1

)
,

k = 1, 2, . . . , |SM−1| and we aim to find the optimal
(w∗

1(k),w∗
2(k)) such that

g
(bk

ak
,

bk+1

ak+1

)
= max

(w1,w2)
min

{
min

(m,n)∈F
2
M−1

d1(m, n),

min
m∈Z\{0}

d2(m)
}

(11a)

s.t.
bk

ak
<

|h21|w2

|h11|w1
≤ bk+1

ak+1
,

0 < w1 ≤
√

3 p1

M2 − 1

and 0 < w2 ≤
√

3 p2

M2 − 1
. (11b)

By applying the propositions in last subsections, we manage
to attain the following lemma in terms of the optimal solution
to problem (11).

Lemma 1: The optimal solution to (11) is given as follows.

1) If |h21|
|h22| ≤ bk + bk+1, the following statements are true:

a) If |h11||h21| ≥
√

p2(ak+ak+1)√
p1(bk+bk+1)

, then g
(bk

ak
,

bk+1
ak+1

) =
|h21|

bk+bk+1

√
3 p2

M2−1
and (w∗

1(k),w∗
2(k)) =(

(ak+ak+1)|h21|
(bk+bk+1)|h11|

√
3 p2

M2−1
,
√

3 p2
M2−1

)
.

b) If |h11|
|h21| <

√
p2(ak+ak+1)√
p1(bk+bk+1) , then g

( bk
ak

,
bk+1
ak+1

) =
|h11|

ak+ak+1

√
3 p1

M2−1
and (w∗

1(k),w∗
2(k)) =(√

3 p1
M2−1

, (bk+bk+1)|h11|
(ak+ak+1)|h21|

√
3 p1

M2−1

)
.

2) If |h21|
|h22| > bk + bk+1, we have the following results:

a) If |h11||h21| ≥
√

p2√
p1

( ak+1
bk+1

+ |h22|
bk+1|h21|

)
, then

g
( bk

ak
,

bk+1
ak+1

) = |h22|
√

3 p2
M2−1

and (w∗
1(k),w∗

2(k)) =(
ak+1|h21|+|h22|

bk+1|h11|
√

3 p2
M2−1

,
√

3 p2
M2−1

)
.

b) If |h11||h21| <
√

p2√
p1

( ak+1
bk+1

+ |h22|
bk+1|h21|

)
, then g

( bk
ak

,
bk+1
ak+1

) =
bk+1|h11||h22|

ak+1|h21|+|h22|
√

3 p1
M2−1

and (w∗
1(k),w∗

2(k)) =(√
3 p1

M2−1
, bk+1|h11|

ak+1|h21|+|h22|
√

3 p1
M2−1

)
.

�
The proof of Lemma 1 can be found in Appendix-E.

Remark 1: We have the following insights from the above
lemma,

1) It can be observed from Lemma 1 that at least one
transmitter should employ the maximum allowable
power, since otherwise we could scale up both
transmitted power without violating the power constraint
such that the minimum Euclidean distance is enlarged.

2) We can see from Lemma 1 that the optimal value of
the objective function together with (w∗

1(k),w∗
2(k))

substantially depend on the relative strength of the

channel coefficients. Inspired by [36], we divide the
considered real Gaussian ZC into three scenarios:

a) Gaussian ZC with weak cross link,
i.e., |h21|

|h22| ∈ (0, 1];
b) Gaussian ZC with strong cross link,

i.e., |h21|
|h22| ∈ (1, 2M);

c) Gaussian ZC with very strong cross link,
i.e., |h21|

|h22| ∈ [2M,∞).
Then, a compact closed-form expression for Problem 1
can be established for three complimentary scenarios,
which constitutes main contents of the subsequent
subsection.

E. The Optimal NOMA Design With PAM Constellation
for the Gaussian ZC

Now we are ready to give the closed-form optimal solution
of (w∗

1, w∗
2) to Problem 1 which maximizes the minimum

Euclidean distance over all the Farey intervals for the afore-
mentioned three scenarios.

1) Scenario 1 (ZC With Weak Cross Link): For this case,
we have |h21|

|h22| ∈ (0, 1]. Consider the Farey interval set SM−1 ={( bk
ak

, bk+1
ak+1

)}|SM−1|
k=1 . By Property 1, we have ak+1+ak+2

bk+1+bk+2
< ak+1

bk+1
<

ak+ak+1
bk+bk+1

, and therefore the positive real axis can be divided into
the |SM−1| + 1 intervals in an increasing order:
{(

0,
a|SM−1| + a|SM−1|+1

b|SM−1| + b|SM−1|+1

)
,
(a|SM−1| + a|SM−1|+1

b|SM−1| + b|SM−1|+1
,

a|SM−1|−1 + a|SM−1|
b|SM−1|−1 + b|SM−1|

)
, · · · ,

(a1 + a2

b1 + b2
,∞

)}
.

In particular, we have a1+a2
b1+b2

= M and
a|SM−1|+a|SM−1 |+1

b|SM−1|+b|SM−1 |+1
= 1

M .

Theorem 1 (Gaussian ZC with weak cross link): Suppose
that |h21|

|h22| ∈ (0, 1]. Then, the optimal power scaling factors to
Problem 1 are explicitly determined as follows:

1) If |h11|
|h21| ≤

√
p2

M
√

p1
, then, we have (w∗

1, w∗
2) =(√

3 p1
M2−1

, M |h11|
|h21|

√
3 p1

M2−1

)
;

2) If |h11|
|h21| ≥ M

√
p2√

p1
, then, we have (w∗

1, w∗
2) =(

M |h21||h11|
√

3 p2
M2−1

,
√

3 p2
M2−1

)
;

3) Let |h11||h21| ∈
(√

p2(a�1+1+a�1+2)√
p1(b�1+1+b�1+2)

,
√

p2(a�1+a�1+1)√
p1(b�1+b�1+1)

)
for some

�1 = 1, · · · , |SM−1| − 1. If we let �̃a = arg mink{(a1 +
a2), · · · , (a�1 + a�1+1)} and �̃b = arg mink{(b�1+1 +
b�1+2), · · · , (b|SM−1| + b|SM−1|+1)}, then we have

(w∗
1, w∗

2)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(√
3 p1

M2 − 1
,
(b�̃a

+ b�̃a+1)|h11|
(a�̃a

+ a�̃a+1)|h21|
√

3 p1

M2 − 1

)
,

if
|h11|
|h21| ≥

√
p2(a�̃a

+ a�̃a+1)√
p1(b�̃b

+ b�̃b+1)
;

( (a�̃b
+ a�̃b+1)|h21|

(b�̃b
+ b�̃b+1)|h11|

√
3 p2

M2 − 1
,

√
3 p2

M2 − 1

)
,

if
|h11|
|h21| <

√
p2(a�̃a

+ a�̃a+1)√
p1(b�̃b

+ b�̃b+1)
.

The proof of Theorem 1 is provided in Appendix-F.
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2) Scenario 2 (ZC With Strong Cross Link): In this case,
|h21||h22| ∈ (1, 2M). We suppose that L − 1 < |h21||h22| ≤ L.
Then, the optimal solution to Problem 1 can be obtained
by considering the following two cases: the Farey interval

set UL
M−1 = {( b′

k
a′

k
,

b′
k+1

a′
k+1

) ∈ SM−1 : b′
k + b′

k+1 ≥ L} and

V L
M−1 = {( b′′

k
a′′

k
,

b′′
k+1

a′′
k+1

) ∈ SM−1 : b′′
k + b′′

k+1 < L}. The whole

discussions on them can be summarized as the following
theorem.

Theorem 2 (ZC With Strong Cross Link): The optimal
solution to Problem 1 in this case can be obtained by
finding the maximum value of the objective functions in
the following two cases which are explicitly attained as
follows:

1) Let
( b′

k
a′

k
,

b′
k+1

a′
k+1

) ∈ UL
M−1. Then, the following three

statements are true.

a) If |h11||h21| ≤
√

p2(a′
|UL

M−1|+a′
|UL

M−1 |+1
)

√
p1(b′

|UL
M−1|+b′

|UL
M−1 |+1

)
, then we have

(w∗
u1

, w∗
u2

) =
(√

3 p1
M2−1

,
(b′

�̃c
+b′

�̃c+1
)|h11|

(a′
�̃c

+a′
�̃c+1

)|h21|
√

3 p1
M2−1

)
,

where �̃c = arg mink{(a′
1 + a′

2), . . . , (a
′
|UL

M−1|
+

a′
|UL

M−1|+1
)}.

b) If |h11||h21| ≥ M
√

p2√
p1

, then we have (w∗
u1

, w∗
u2

) =(
M |h21|
|h11|

√
3 p2

M2−1
,
√

3 p2
M2−1

)
.

c) Suppose that |h11||h21| ∈
(√

p2(a′
�2+1+a′

�2+2)√
p1(b′

�2+1+b′
�2+2)

,
√

p2(a′
�2

+a′
�2+1)√

p1(b′
�2

+b′
�2+1)

)
for some �′

2 = 1, · · · , |UL
M−1|.

If we let �̃d = arg mink{(a1 + a2), . . . , (a�2 +
a�2+1)} and �̃e = arg mink{(b�2+1 +
b�2+2), . . . , (b|UL

M−1| + b|UL
M−1|+1)}, then we

have

(w∗
u1

, w∗
u2

)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(√ 3 p1

M2 − 1
,
(b′

�̃d
+ b′

�̃d+1
)|h11|

(a′
�̃d

+ a′
�̃d+1

)|h21|
√

3 p1

M2 − 1

)
,

if
|h11|
|h21| ≥

√
p2(a′

�̃d
+ a′

�̃d+1
)

√
p1(b′

�̃e
+ b′

�̃e+1
)
;

( (a′
�̃e

+ a′
�̃e+1

)|h21|
(b′

�̃e
+ b′

�̃e+1
)|h11|

√
3 p2

M2 − 1
,

√
3 p2

M2 − 1

)

if
|h11|
|h21| <

√
p2(a′

�̃d
+ a′

�̃d+1
)

√
p1(b′

�̃e
+ b′

�̃e+1
)
.

2) Let
( b′′

k−1
a′′

k−1
,

b′′
k

a′′
k

) ∈ V L
M−1. Then, the following two state-

ments are true.
a) If |h11||h22| ≤

√
p2√
p1

, then we have (w∗
v1

, w∗
v2

) =
(
√

3 p1
M2−1

,
b′′|VM−1 |+1|h11||h22|

a′′|VM−1 |+1|h21|+|h22|
√

3 p1
M2−1

).

b) If
|h11|√p1
|h21|√p2

∈ ( a′′
�3+1

b′′
�3+1

+ |h22|
b′′
�3+1|h21| ,

a′′
�3

b′′
�3

+ |h22|
b′′
�3

|h21|
)

for some �3 = 1, · · · , |VM−1|, then we

have

(w∗
v1

, w∗
v2

)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(√ 3 p1

M2 − 1
,

b′′
�3

|h11|
a′′
�3

|h21| + |h22|
√

3 p1

M2 − 1

)
,

if
|h11|
|h21| ≥

√
p2√
p1

(a′′
�3

b′′
�3

+ |h22|
b′′
�3

|h21|
);

(a′′
�3+1|h21| + |h22|

b′′
�3+1|h11|

√
3 p2

M2
2 − 1

,

√
3 p2

M2
2 − 1

)

if
|h11|
|h21| <

√
p2√
p1

(a�3
′′

b′′
�3

+ |h22|
b′′
�3

|h21|
)
.

The proof of Theorem 2 is very similar to that of Theo-
rem 1 and the following Theorem 3 and thus, is omitted due
to space limitation.

3) Scenario 3 (ZC With Very Strong Cross Link): In this
case, |h21||h22| ∈ [2M,∞). Likewise, we consider the Farey

interval set SM−1 = {( bk
ak

,
bk+1
ak+1

)}|SM−1|
k=1 . Note that |h21||h22| ≥

2M > bk + bk+1 for k = 1, . . . , |SM−1|. Then, by Property 1
and Proposition 4, we have ak+1

bk+1
+ |h22|

bk+1|h21| ≤ ak+ak+1
bk+bk+1

< ak
bk

<
ak
bk

+ |h22|
bk |h21| . As a result, the positive real axis can be divided

into the following intervals in increasing order:
{(

0,
a|SM−1|+1

b|SM−1|+1
+ |h22|

b|SM−1|+1|h21|
)
,

. . . ,
(a2

b2
+ |h22|

b2|h21| ,
a1

b1
+ |h22|

b1|h21|
)}

,

where a1
b1

+ |h22|
b1|h21| = ∞.

Theorem 3 (Gaussian ZC With Very Strong Cross Link): Let
|h21||h22| ∈ [2M,∞). Then, the optimal solution to Problem 1 is
given below:

1) If |h11|
|h22| ≤

√
p2√
p1

, then we have (w∗
1 , w∗

2) =
(
√

3 p1
M2−1

, |h11||h22|
√

3 p1
M2−1

).

2) If
|h11|√p1
|h21|√p2

∈ ( a�4+1

b�4+1
+ |h22|

b�4+1|h21| ,
a�4
b�4

+ |h22|
b�4 |h21|

)
for some

�4 = 1, . . . , |SM−1|, then we have

(w∗
1, w∗

2) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(√ 3 p1

M2 − 1
,

b�4|h11|
a�4 |h21| + |h22|

√
3 p1

M2 − 1

)
,

if
|h11|
|h21| ≥

√
p2√
p1

(a�4

b�4

+ |h22|
b�4|h21|

);
(a�4+1|h21| + |h22|

b�4+1|h11|
√

3 p2

M2 − 1
,

√
3 p2

M2 − 1

)
,

if
|h11|
|h21| <

√
p2√
p1

(a�4

b�4

+ |h22|
b�4|h21|

)
.

The proof of Theorem 3 is provided in Appendix-G.

IV. SIMULATION RESULTS AND DISCUSSIONS

In this section, computer simulations are carried out
to demonstrate the effectiveness of our proposed NOMA
design under different channel configurations. More precisely,
we compare our proposed NOMA design with CR based
NOMA [30], time-division multiple access (TDMA) and
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Fig. 2. Optimal resulting constellations at receiver D1 for various cases: (a) Weak cross link with h11 = 1, h21 = 1/2 and h22 = 1. (b) Strong cross link
with h11 = 1, h21 = 3/2 and h22 = 1. (c) Strong cross link with h11 = 1, h21 = 3 and h22 = 1 and (d) Very strong cross link with h11 = 1, h21 = 5 and
h22 = 1/2.

frequency-division multiple access (FDMA) approaches. With-
out loss of generality, we set P1 = P2 = 1. For simplicity,
in the simulations, we assume that the same square-QAM
constellation is adopted by both users, i.e., M = M ′ and
according to (6), we have p1 = p′

1 = P1/2 = 1/2 and
p2 = p′

2 = P2/2 = 1/2.

A. The Resulting Optimal Sum Constellation at Receiver D1

For Several Deterministic Channels

Here, we consider several deterministic channels corre-
sponding to the three scenarios of weak cross link, strong
cross link and very strong cross link. We assume that
16-QAM constellations are used by both users with M =
M ′ = 4. We discuss the results of these cases one by one
as follows:

1) Weak Cross Link: In this case, we assume that h11 = 1,
h21 = 1/2 and h22 = 1. Based on the derived expressions
for the optimal solution provided in the previous section,

we can readily obtain that (w∗
1, w∗

2) = (0.4472, 0.2236).
The corresponding received constellation at D1 is plotted
in Fig. 2(a). It can be observed that the sum-constellation at D1
is a regular 256-QAM generated by the superposition of two
16-QAM. Hereafter, we call the signal constellation with
smaller minimum Euclidean distance as the satellite constel-
lation. By observing that w∗

1h11 = 0.4472 and w∗
2h21 =

0.1118 (i.e., w∗
2h21 = 1

4w∗
1h11), we can deduce that the

constellation used by S2 forms the satellite constellation of
the sum constellation at D1.

2) Strong Cross Link: We investigate two channel real-
izations for this scenario. For the first realization, we let
h11 = 1, h21 = 3/2 and h22 = 1. We then have (w∗

1 , w∗
2) =

(0.1677, 0.4472) and the resulting sum-constellation at D1 is
also regular, as illustrated in Fig. 2(b). Since w∗

1h11 = 0.1677
and w∗

2h21 = 0.6708 (i.e., w∗
2h21 = 4 w∗

1h11) in this case,
the constellation used by S1 forms the satellite constellation
at D1. For the second realization, we set h11 = 1, h21 = 3
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Fig. 3. Comparison of the proposed NOMA, CR based NOMA, TDMA
and FDMA with (δ2

11, δ2
21, δ2

22) = (1, 1, 1): (a) 16-QAM is used for proposed
NOMA while 16-PSK is used for CR based NOMA. (b) 64-QAM is used for
proposed NOMA while 64-PSK is used for CR based NOMA.

and h22 = 1, leading to (w∗
1 , w∗

2) = (0.3354, 0.4472). The
resulting constellation plotted in Fig. 2(c) is also uniform as
in the previous two scenarios. We have w∗

1h11 = 0.3354 and
w∗

2h21 = 1.3416 (i.e., w∗
2h21 = 4 w∗

1h11). Thus, the constella-
tion used by the transmitter S1 forms the satellite constellation
at D1.

3) Very Strong Cross Link: In this case, we suppose that
h11 = 1, h21 = 5 and h22 = 1/2, generating (w∗

1 , w∗
2) =

(0.2236, 0.4472). The obtained constellation at D1 is shown
in Fig. 2(d). In this case, we have w∗

1h11 = 0.2236 and
w∗

2h21 = 2.236 (i.e., w∗
2h21 = 10 w∗

1h11). However, it can
be observed that w∗

2h22 = 0.2236, i.e., w∗
1h11 = w∗

2h22.

B. Average Error Performance Comparison
in Rayleigh Fading Channels

We now compare the average BER of the proposed NOMA
scheme with that of three existing methods, including TDMA,
FDMA, and NOMA with CR [30] methods, over Rayleigh
fading channels with h11 ∼ CN (0, δ2

11), h21 ∼ CN (0, δ2
21)

and h22 ∼ CN (0, δ2
22). Recall that we use error perfor-

mance (i.e., BER) as the design criterion for the NOMA
in ZCs with finite-alphabet inputs using fixed transmission
rate (i.e., fixed constellation size). However, we are unable

Fig. 4. Comparison of the proposed NOMA, CR based NOMA, TDMA and
FDMA with (δ2

11, δ2
21, δ2

22) = (1, 1/4, 1): (a) 16-QAM is used for proposed
NOMA while 16-PSK is used for CR based NOMA. (b) 64-QAM is used for
proposed NOMA while 64-PSK is used for CR based NOMA.

to compare the error performance of the considered system
using finite-alphabet inputs with that of Gaussian inputs. This
is because for Gaussian input, it is intractable to evaluate
the BER for uncoded system since its input signal is con-
tinuous. Moreover, the BER for coded system with Gaussian
input is hard to simulate due to the huge storage capacity
requirement for the large codebook and the high computational
complexity [59, Ch. 9].

For TDMA, we assume that both users transmit alternatively
by using half of the total time slots and thus no interference
occurs at the destination side. More importantly, the individual
instantaneous power constraints on both users S1 and S2
remain unchanged. On the other hand, for FDMA, each
user uses only half of the available bandwidth. Due to the
orthogonality between different frequency band, there is also
no interference occurring at the destination side. Note that,
in FDMA, the bandwidth occupied by each user is halved
and the noise arises at the receiver is assumed to be white
Gaussian. Therefore, the variance of the noise is also halved.
In addition, for the CR based NOMA as proposed in [30],
we let each user transmit at the maximum allowable power by
using constellations {exp( j2πk

N )}N−1
k=0 and {exp( j2π�+ jπ

N )}N−1
�=0

for user S1 and S2, respectively.
In Fig. 3, we consider that the variances of all channels are

the same, i.e., (δ2
11, δ

2
21, δ

2
22) = (1, 1, 1), and the average BER
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Fig. 5. Comparison of the proposed NOMA, CR based NOMA, TDMA
and FDMA with (δ2

11, δ2
21, δ2

22) = (1, 4, 1): (a) 16-QAM is used for proposed
NOMA while 16-PSK is used for CR based NOMA. (b) 64-QAM is used for
proposed NOMA while 64-PSK is used for CR based NOMA.

over both receivers of all the methods are plotted against the
SNR ρ = 1

2σ 2 . In Fig. 3(a), 16-QAM is used for the proposed
NOMA scheme while 16-PSK is employed by the NOMA with
CR. Since only half of the total time slots or total bandwidths
are available for each transmitter, to maintain the same data
rate for each user in each block compared with NOMA
methods, we should increase the constellation size by using
256-QAM in both TDMA and FDMA. It can be observed that,
our proposed method has significant BER gain over TDMA
and FDMA methods, which confirms the effectiveness of the
NOMA scheme. From the simulation results, we also find
that FDMA has a smaller BER compared with TDMA. This
is because the variance of the effective noise is smaller than
that of TDMA. As the rotation based method uses the PSK
constellation, which is not spectrally efficient, it has the worst
BER performance. Then, in Fig. 3(b), the average BER of
all the cases are plotted against the SNR where 64-QAM is
used by each user for the proposed NOMA and 64-PSK is
used by CR based NOMA while 4096-QAM constellations
are used by TDMA and FDMA methods. We also simulate
another two cases with unequal channel variances. Specifically,
the average BER of both receivers for all the considered
methods is plotted in Fig. 4, wherein the variances of three
channels are set as (δ2

11, δ
2
21, δ

2
22) = (1, 1/4, 1). The case with

the variances of three channels (δ2
11, δ

2
21, δ

2
22) = (1, 4, 1) is

provided in Fig. 5. Similar observations can be seen as the
previous case with equal channel variances, which further

verifies the effectiveness of our proposed NOMA design.

V. CONCLUSIONS

In this paper, we developed a novel and practical design
framework for the non-orthogonal multiple access (NOMA)
in a classical two-transmitter two-receiver Z-channel with
widely-used quadrature amplitude modulation (QAM) and
max-min user fairness. Specifically, we formulated a max-min
optimization problem to jointly optimize the scaling factors at
both transmitters to maximize the smaller minimum Euclidean
distance among the two resulting signal constellations at both
receivers, subject to the individual average power constraint
at each transmitter. The formulated mixed continuous-discrete
problem was successfully resolved in compact closed-form by
strategically applying the Farey sequences and their unique
properties. Simulation results verified the correctness of our
analytical derivations and showed that the proposed NOMA
design significantly outperforms the existing orthogonal mul-
tiple access and NOMA schemes, especially at high signal-to-
noise ratio. Furthermore, the performance gap of the proposed
scheme over its existing counterparts can be further enlarged
when the size of constellations used at the transmitter side
becomes larger.

APPENDIX

A. Proof of Proposition 1

We first divide the feasible region Z2
K \{(0, 0)} into four sub-

sets given by S
2
K ,1 = {(m, n) : m, n ∈ NK , (m, n) �= (0, 0)},

S2
K ,2 = {(−m, n) : m, n ∈ NK , (m, n) �= (0, 0)},

S
2
K ,3 = {(m,−n) : m, n ∈ NK , (m, n) �= (0, 0)},

S
2
K ,4 = {(−m,−n) : m, n ∈ NK , (m, n) �= (0, 0)}.

Then clearly we have Z2
K \ {(0, 0)} = ∪4

k=1S2
K ,k . For

(−m, n) ∈ S2
K ,2 with m, n ≥ 0, we can always find

(m, n) ∈ S
2
K ,1 such that d1(m, n) = ∣∣|h11|w1 n −

|h21|w2 m
∣∣ ≤ ∣∣|h11|w1 n − |h21|w2(−m)

∣∣ = d1(−m, n).
Hence, min(m,n)∈S

2
K ,1

d1(m, n) ≤ min(m,n)∈S
2
K ,2

d1(m, n).

By a similar argument on S
2
K ,3 and S

2
K ,4, it follows that

min(m,n)∈S
2
K ,1

d1(m, n) = min(m,n)∈Z
2
K ,1\{(0,0)} d1(m, n).

Then, we further divide S
2
K ,1 into F

2
K and

S2
K ,1 \ F2

K . In what follows, we will show that
min(m,n)∈F

2
K

d1(m, n) = min(m,n)∈S
2
K ,1

d1(m, n).
This can be proved by contradiction. Suppose that
min(m,n)∈S

2
1\F

2
K

d1(m, n) = min(m,n)∈S
2
K ,1

d1(m, n), where

the minimum is achieved by (m∗, n∗) ∈ S
2
K ,1 \ F

2
K

such that 〈m∗, n∗〉 = � > 1 by the definition of Farey
sequences. Then, we can find (m∗

� , n∗
� ) ∈ F2

K such that
d1(

m∗
� , n∗

� ) = 1
� d1(m∗, n∗) < d1(m∗, n∗), which contradicts

the assumption. This completes the proof. �

B. Proof of Proposition 2

Recall that d1(m, n) = ∣∣|h11|w1 n −|h21|w2 m
∣∣. Therefore,

for |h21|w2|h11|w1
∈ ( n1

m1
, n2

m2

)
, we have: d1(m1, n1) − d1(m2, n2) =

(m1 + m2)|h11|w1
( |h21|w2|h11|w1

− n1+n2
m1+m2

)
. The results presented in

the proposition can be readily obtained, and we complete the
proof. �
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C. Proof of of Proposition 3

We first consider the case |h21|w2|h11|w1
∈ ( n2

m2
, n2+n3

m2+m3
).

By using Proposition 2, we have d1(m2, n2) < d1(m3, n3).
Then, with the help of Property 1 and 3, we have
|h21|w2|h11|w1

∈ ( n2
m2

, n2+n3
m2+m3

) ⊂ ( n2
m2

, n3
m3

) ⊆ ( n2
m2

, n2+n4
m2+m4

) and
using Property 2 again, we have d1(m2, n2) ≤ d1(m4, n4).
On the other hand, by Property 1 and 3, we have
|h21|w2|h11|w1

∈ ( n2
m2

, n2+n3
m2+m3

) ⊂ ( n2
m2

, n3
m3

) ⊆ ( n1+n3
m1+m3

, n3
m3

) and using
Property 2 again, we have d1(m3, n3) ≤ d1(m1, n1).

As n1
m1

and n4
m4

are randomly picked entry in
SK , or equivalently (m1, n1) and (m4, n4) are randomly
picked in F2

M−1 \ {(m2, n2), (m3, n3)}, this proves that
for |h21|w2|h11|w1

∈ ( n2
m2

, n2+n3
m2+m3

), min(m,n)∈F
2
M−1

d1(m, n) =
d1(m2, n2) = |h21|w2 m2 − |h11|w1 n2. The other case can
also be proved by a similar argument and hence omitted.
We completes the proof. �

D. Proof of Proposition 4
First of all, we calculate the following difference ak+ak+1

bk+bk+1
−

ak+1
bk+1

− |h22|
bk+1|h21| = |h21|−|h22|(bk+bk+1)

(bk+bk+1)bk+1|h21| . Hence, if |h21||h22| ≥ bk +
bk+1, then ak+1

bk+1
+ |h22|

bk+1|h21| ≤ ak+ak+1
bk+bk+1

. Similarly, we have ak
bk

−
|h22|

bk |h21| − ak+ak+1
bk+bk+1

= |h21|−|h22|(bk+bk+1)
bk (bk+bk+1)|h21| . As a result, if |h21||h22| ≥

bk + bk+1, then ak+ak+1
bk+bk+1

≤ ak
bk

− |h22|
bk |h21| . This completes the

proof. �

E. Proof of Lemma 1

According to proposition 3 and notice that
( bk

ak
,

bk+1
ak+1

) =( bk
ak

,
bk+bk+1
ak+ak+1

)∪( bk+bk+1
ak+ak+1

,
bk+1
ak+1

)
, problem in (11) can be further

divided into the following two sub-problems and the overall
solution is the maximum value of the two problems:

Problem 2 (Sub-Problem 1): We aim to solve the following
optimization problem:

g1

(bk

ak
,

bk+1

ak+1

)
= max

w1,w2
min {|h11|w1bk+1 − |h21|w2ak+1,

|h22|w2} (12a)

s.t.
bk + bk+1

ak + ak+1
≤ |h21|w2

|h11|w1
≤ bk+1

ak+1
, (12b)

0 < w1 ≤
√

3 p1

M2 − 1
,

0 < w2 ≤
√

3 p2

M2 − 1
. (12c)

�
Problem 3 (Sub-Problem 2): The optimization problem is

stated as follows:

g2

(bk

ak
,

bk+1

ak+1

)
= max

w1,w2
min{|h21|w2ak − |h11|w1bk, |h22|w2}

(13a)

s.t.
bk

ak
≤ |h21|w2

|h11|w1
<

bk + bk+1

ak + ak+1
, (13b)

0 < w1 ≤
√

3 p1

M2 − 1
,

0 < w2 ≤
√

3 p2

M2 − 1
. (13c)

�

We first consider Sub-problem 1, which can be divided into
the following two case:

1) Case 1: Receiver 1 has smaller Euclidean distance.

g11

(bk

ak
,

bk+1

ak+1

)

= max
w1,w2

bk+1|h11|w1 − ak+1|h21|w2

s.t. bk+1|h11|w1 − ak+1|h21|w2 ≤ |h22|w2, (14a)

bk + bk+1

ak + ak+1
≤ |h21|w2

|h11|w1
≤ bk+1

ak+1
, (14b)

0 < w1 ≤
√

3 p1

M2 − 1
, 0 < w2 ≤

√
3 p2

M2 − 1
.

(14c)

2) Case 2: Receiver 2 has smaller Euclidean distance.

g12

(bk

ak
,

bk+1

ak+1

)

= max
w1,w2

|h22|w2

s.t. |h22|w2 < bk+1|h11|w1 − ak+1|h21|w2, (15a)

bk + bk+1

ak + ak+1
≤ |h21|w2

|h11|w1
<

bk+1

ak+1
, (15b)

0 < w1 ≤
√

3 p1

M2 − 1
, 0 < w2 ≤

√
3 p2

M2 − 1
.

(15c)

For Case-1 of Sub-problem 1, constraint (14a) is equiv-
alent to bk+1|h11|

ak+1|h21|+|h22|w1 ≤ w2 and constraint (14b) means
(bk+bk+1)|h11|
(ak+ak+1)|h21|w1 ≤ w2 ≤ bk+1|h11|

ak+1|h21|w1. Also we notice that if
|h21||h22| ≥ bk + bk+1 then (bk+bk+1)|h11|

(ak+ak+1)|h21|w1 ≤ bk+1|h11|
ak+1|h21|+|h22|w1.

Hence, the optimization problem can be further divided into
two cases:

1) If |h21||h22| ≤ bk + bk+1, then

g11

(bk

ak
,

bk+1

ak+1

)

= max
w1,w2

bk+1|h11|w1 − ak+1|h21|w2

s.t.
(bk + bk+1)|h11|
(ak + ak+1)|h21|w1 ≤ w2 ≤ bk+1|h11|

ak+1|h21| , (16a)

0 < w1 ≤
√

3 p1

M2 − 1
, 0 < w2 ≤

√
3 p2

M2 − 1
.

(16b)

We let w2 = (bk+bk+1)|h11|
(ak+ak+1)|h21|w1, then the objective

function is |h11|w1
ak+ak+1

. In this case, (16b) is

equivalent to w1 ≤ (ak+ak+1)|h21|
(bk+bk+1)|h11|

√
3 p2

M2−1
and

w1 ≤
√

3 p1
M2−1

and hence, we have g11
( bk

ak
,

bk+1
ak+1

) =
min

{ |h11|
ak+ak+1

(ak+ak+1)|h21|
(bk+bk+1)|h11|

√
3 p2

M2−1
, |h11|

ak+ak+1

√
3 p1

M2−1

}
.
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As a consequence, we have

g11

(bk

ak
,

bk+1

ak+1

)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

|h21|
bk + bk+1

√
3 p2

M2 − 1
, where

(w1, w2)

= ( (ak + ak+1)|h21|
(bk + bk+1)|h11|

√
3 p2

M2 − 1
,

√
3 p2

M2 − 1

)
,

if
|h11|
|h21| ≥

√
p2(ak + ak+1)√
p1(bk + bk+1)

;
|h11|

ak + ak+1

√
3 p1

M2 − 1
, where

(w1, w2)

= (√ 3 p1

M2 − 1
,
(bk + bk+1)|h11|
(ak + ak+1)|h21|

√
3 p1

M2 − 1

)
,

if
|h11|
|h21| <

√
p2(ak + ak+1)√
p1(bk + bk+1)

,

2) If |h21|
|h22| > bk + bk+1, then

g11

(bk

ak
,

bk+1

ak+1

)

= max
w1,w2

bk+1|h11|w1 − ak+1|h21|w2

s.t.
bk+1|h11|

ak+1|h21| + |h22|w1 ≤ w2 ≤ bk+1|h11|
ak+1|h21|w1,

(18a)

0 < w1 ≤
√

3 p1

M2 − 1
, 0 < w2 ≤

√
3 p2

M2 − 1
.

(18b)

We first notice that bk+1|h11|
ak+1|h21|+|h22|w1 <

bk+1|h11|
ak+1|h21|w1 and

hence the problem is always feasible. By letting w2 =
bk+1|h11|

ak+1|h21|+|h22|w1, the objective function can be written by
bk+1|h11||h22|

ak+1|h21|+|h22|w1. In this case, the constraints in (18b) are

equivalent to w1 ≤
√

3 p1
M2−1

and w1 ≤ ak+1|h21|+|h22|
bk+1|h11|

√
3 p2

M2−1
.

Therefore, the solution is

g11

(bk

ak
,

bk+1

ak+1

)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

bk+1|h11||h22|
ak+1|h21| + |h22|

√
3 p1

M2 − 1
, where

(w1, w2) = (√ 3 p1

M2
1 − 1

,
bk+1|h11|

ak+1|h21| + |h22|
√

3 p1

M2 − 1

)
,

if
|h11|
|h21| ≤

√
p2√
p1

(ak+1

bk+1
+ |h22|

bk+1|h21|
);

|h22|
√

3 p2

M2
2 − 1

, where

(w1, w2) = (ak+1|h21| + |h22|
bk+1|h11|

√
3 p2

M2 − 1
,

√
3 p2

M2 − 1

)
,

if
|h11|
|h21| >

√
p2√
p1

(ak+1

bk+1
+ |h22|

bk+1|h21|
)
.

For Case-2 of Sub-problem 1, constraint (15a) is equiva-
lent to w2 <

bk+1|h11|
ak+1|h21|+|h22|w1 and constraint (15b) implies

(bk+bk+1)|h11|
(ak+ak+1)|h21|w1 ≤ w2 ≤ bk+1|h11|

ak+1|h21|w1. By noticing that
bk+1|h11|

ak+1|h21|+|h22| <
bk+1|h11|
ak+1|h21| , the problem is equivalent to

g12

(bk

ak
,

bk+1

ak+1

)

= max
w1,w2

|h22|w2

s.t.
(bk + bk+1)|h11|
(ak + ak+1)|h21|w1 ≤ w2 ≤ bk+1|h11|

ak+1|h21| + |h22|w1,

(20a)

0 < w1 ≤
√

3 p1

M2 − 1
, 0 < w2 ≤

√
3 p2

M2 − 1
. (20b)

Constraint (20a) is feasible if |h21||h22| ≥ bk + bk+1. In this case,
the solution is

g12

(bk

ak
,

bk+1

ak+1

)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

bk+1|h11||h22|
ak+1|h21| + |h22|

√
3 p1

M2 − 1
, where

(w1, w2) = (√ 3 p1

M2 − 1
,

bk+1|h11|
ak+1|h21| + |h22|

√
3 p1

M2 − 1

)
,

if
|h11|
|h21| ≤

√
p2√
p1

(ak+1

bk+1
+ |h22|

bk+1|h21|
);

|h22|
√

3 p2

M2
2 − 1

, where

(w1, w2) = (ak+1|h21| + |h22|
bk+1|h11|

√
3 p2

M2
2 − 1

,

√
3 p2

M2
2 − 1

)
,

if
|h11|
|h21| >

√
p2√
p1

(ak+1

bk+1
+ |h22|

bk+1|h21|
)
.

The solution of Sub-problem 2 can be attained in a similar
fashion as Sub-problem 1, and hence is omitted. Then, for the
subinterval division |h21|w2|h11|w1

∈ ( bk
ak

,
bk+1
ak+1

)
, the solution to both

Sub-problems can be summarized as follows:

1) Scenario 1, bk+bk+1
ak+ak+1

≤ |h21|w2|h11|w1
≤ bk+1

ak+1
:

a) If |h21|
|h22| ≤ bk + bk+1

g11

(bk

ak
,

bk+1

ak+1

)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

|h21|
bk + bk+1

√
3 p2

M2 − 1
, where

(w1, w2)

= ( (ak + ak+1)|h21|
(bk + bk+1)|h11|

√
3 p2

M2 − 1
,

√
3 p2

M2 − 1

)
,

if
|h11|
|h21| ≥

√
p2(ak + ak+1)√
p1(bk + bk+1)

;
|h11|

ak + ak+1

√
3 p1

M2 − 1
, where

(w1, w2)

= (√ 3 p1

M2 − 1
,
(bk + bk+1)|h11|
(ak + ak+1)|h21|

√
3 p1

M2 − 1

)
,

if
|h11|
|h21| <

√
p2(ak + ak+1)√
p1(bk + bk+1)

,
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b) If |h21||h22| > bk + bk+1

g11

(bk

ak
,

bk+1

ak+1

)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

bk+1|h11||h22|
ak+1|h21| + |h22|

√
3 p1

M2 − 1
, where

(w1, w2)

= (√ 3 p1

M2 − 1
,

bk+1|h11|
ak+1|h21| + |h22|

√
3 p1

M2 − 1

)
,

if
|h11|
|h21| ≤

√
p2√
p1

(ak+1

bk+1
+ |h22|

bk+1|h21|
);

|h22|
√

3 p2

M2 − 1
, where

(w1, w2)

= (ak+1|h21| + |h22|
bk+1|h11|

√
3 p2

M2 − 1
,

√
3 p2

M2 − 1

)
,

if
|h11|
|h21| >

√
p2√
p1

(ak+1

bk+1
+ |h22|

bk+1|h21|
)
.

2) Scenario 2, bk
ak

≤ |h21|w2|h11|w1
≤ bk+bk+1

ak+ak+1
:

a) Case 1: Receiver 1 has smaller Euclidean
distance.

i) If |h21||h22| ≤ bk + bk+1, the solution is

g21

(bk

ak
,

bk+1

ak+1

)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

|h21|
bk + bk+1

√
3 p2

M2 − 1
, where

(w1, w2)

= ( (ak + ak+1)|h21|
(bk + bk+1)|h11|

√
3 p2

M2 − 1
,

√
3 p2

M2 − 1

)
,

if
|h11|
|h21| ≥

√
p2(ak + ak+1)√
p1(bk + bk+1)

;

|h11|
ak + ak+1

√
3 p1

M2 − 1
, where

(w1, w2)

= (√ 3 p1

M2 − 1
,
(bk + bk+1)|h11|
(ak + ak+1)|h21|

√
3 p1

M2 − 1

)
,

if
|h11|
|h21| <

√
p2(ak + ak+1)√
p1(bk + bk+1)

.

ii) If |h21|
|h22| ≥ bk + bk+1,

g21

(bk

ak
,

bk+1

ak+1

)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

|h22|
√

3 p2

M2 − 1
, where

(w1, w2)

= ( |h21|ak − |h22|
bk|h11|

√
3 p2

M2 − 1
,

√
3 p2

M2 − 1

)
,

if
|h11|
|h21| ≥

√
p2√
p1

(ak

bk
− |h22|

|h21|bk

);
bk |h11||h22|

|h21|ak − |h22|
√

3 p1

M2 − 1
, where

(w1, w2)

= (√ 3 p1

M2 − 1
,

bk|h11|
|h21|ak − |h22|

√
3 p1

M2 − 1

)
,

if
|h11|
|h21| <

√
p2√
p1

(ak

bk
− |h22|

|h21|bk

)
.

b) Case 2: Receiver 2 has smaller Euclidean distance.

i) If |h21|
|h22| ≥ bk + bk+1, the solution is

g22

(bk

ak
,

bk+1

ak+1

)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(bk + bk+1)|h11||h22|
(ak + ak+1)|h21|

√
3 p1

M2 − 1
, where

(w1, w2)

= (√ 3 p1

M2 − 1
,
(bk + bk+1)|h11|
(ak + ak+1)|h21|

√
3 p1

M2 − 1

)
,

if
|h11|
|h21| ≤

√
p2(ak + ak+1)√
p1(bk + bk+1)

;

|h22|
√

3 p2

M2 − 1
, where

(w1, w2)

= ( (ak + ak+1)|h21|
(bk + bk+1)|h11|

√
3 p2

M2 − 1
,

√
3 p2

M2 − 1

)
,

if
|h11|
|h21| >

√
p2(ak + ak+1)√
p1(bk + bk+1)

.

Now, we aim to combine g21
( bk

ak
, bk+1

ak+1

)
and g22

( bk
ak

, bk+1
ak+1

)
.

By Proposition 4, for |h21||h22| ≥ bk + bk+1, we have ak
bk

−
|h22||h21|bk

≥ ak+ak+1
bk+bk+1

. Also, for |h11||h21| ≤
√

p2√
p1

( ak
bk

− |h22|
bk |h21|

)
,

we have
√

3 p2
M2−1

≥ bk |h11||h21|ak−|h22|
√

3 p1
M2−1

. In addition, for
|h21||h22| ≥ bk +bk+1, we have (bk+bk+1)

(ak+ak+1)|h21| ≥ bk|h21|ak−|h22| . Hence,

we have g22
( bk

ak
,

bk+1
ak+1

) ≥ g21
( bk

ak
,

bk+1
ak+1

)
. We notice that for

|h21||h22| ≤ bk + bk+1, g11
( bk

ak
,

bk+1
ak+1

) = g21
( bk

ak
,

bk+1
ak+1

)
. Then for

|h21||h22| ≥ bk+bk+1, we combine g11
( bk

ak
,

bk+1
ak+1

)
and g22

( bk
ak

,
bk+1
ak+1

)
.

By Proposition 4, for |h21||h22| ≥ bk + bk+1, we have
√

p2√
p1

( ak+1
bk+1

+
|h22|

bk+1|h21|
) ≤

√
p2(ak+ak+1)√
p1(bk+bk+1) . Also, for |h21||h22| ≥ bk + bk+1,

we attain bk+1|h11||h22|
ak+1|h21|+|h22|

√
3 p1

M2−1
≥ (bk+bk+1)|h11||h22|

(ak+ak+1)|h21|
√

3 p1
M2−1

.

In addition, for |h11|
|h21| ≤

√
p2(ak+ak+1)√
p1(bk+bk+1)

, we have |h22|
√

3 p2
M2−1

≥
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(bk+bk+1)|h11||h22|
(ak+ak+1)|h21|

√
3 p1

M2−1
. In conclusion, for |h21||h22| ≥ bk + bk+1,

g11
( bk

ak
,

bk+1
ak+1

) ≥ g22
( bk

ak
,

bk+1
ak+1

)
.

With the above discussion, we have the result in Lemma 1
and we complete the proof. �

F. Proof of Theorem 1

For the weak cross link, we have |h21||h22| ≤ 1 ≤ bk + bk+1 for
k = 1, . . . , |SM−1|.

1) If |h11||h21| ≤
√

p2
M

√
p1

, we have |h11||h21| ≤√
p2(ak+ak+1)√
p1(bk+bk+1) , and then by Lemma 1, we attain

g
( bk

ak
,

bk+1
ak+1

) = |h11|
ak+ak+1

√
3 p1

M2−1
for k =

1, . . . , |SM−1|. Also, note that |SM−1| =
arg mink {(a1 + a2), . . . , (a|SM−1| + a|SM−1|+1)}, then

max
{ |h11|

a1+a2

√
3 p1

M2−1
, · · · , |h11|

a|SM−1 |+a|SM−1 |+1

√
3 p1

M2−1

}
=

|h11|
√

3 p1
M2−1

, with (w∗
1, w∗

2) =(√
3 p1

M2−1
, M |h11|

|h21|
√

3 p1
M2−1

)
.

2) If |h11||h21| ≥ M
√

p2√
p1

, we have |h11||h21| ≥ (ak+ak+1)
√

p2
(bk+bk+1)

√
p1

and

then, by using Lemma 1, we have g
( bk

ak
, bk+1

ak+1

) =
|h21|

bk+bk+1

√
3 p2

M2
2 −1

for k = 1, . . . , |SM−1|. Also, note that

1 = arg mink {(b1 + b2), . . . , (b|SM−1| + b|SM−1|+1)}.
Then,

max
{ |h21|

b1 + b2

√
3 p2

M2 − 1
, · · · ,

|h21|
b|SM−1| + b|SM−1|+1

√
3 p2

M2 − 1

}

= |h21|
√

3 p2

M2 − 1
,

with (w∗
1, w∗

2) =
(

M |h21||h11|
√

3 p2
M2−1

,
√

3 p2
M2−1

)
.

3) If |h11||h21| ∈
(√

p2(a�1+1+a�1+2)√
p1(b�1+1+b�1+2)

,
√

p2(a�1+a�1+1)√
p1(b�1+b�1+1)

)
, for �1 =

1, . . . , |SM−1| − 1, then, with the help of Lemma 1,
we have

g
(bk

ak
,

bk+1

ak+1

)

=

⎧
⎪⎪⎨
⎪⎪⎩

|h11|
ak + ak+1

√
3 p1

M2 − 1
for k = 1, . . . , �1,

|h21|
bk + bk+1

√
3 p2

M2 − 1
for k = �1 + 1, . . . , |SM−1|.

Note that, �̃a = arg mink{(a1 + a2), . . . , (a�1 + a�1+1)}
and �̃b = arg mink{(b�1+1 + b�1+2), . . . , (b|SM−1| +
b|SM−1|+1)}, hence we have

max
{ |h11|

a1 + a2

√
3 p1

M2 − 1
, · · · ,

|h11|
a�1 + a�1+1

√
3 p1

M2 − 1
,

|h21|
b�1+1 + b�1+2

√
3 p2

M2 − 1
, . . . ,

|h21|
b|SM−1| + b|SM−1|+1

√
3 p2

M2 − 1

}

= max
{ |h11|

a�̃a
+ a�̃a+1

√
3 p1

M2 − 1
,

|h21|
b�̃b

+ b�̃b+1

√
3 p2

M2 − 1

}
.

Therefore, if |h11||h21| ≥
√

p2(a�̃a
+a�̃a+1)√

p1(b�̃b
+b�̃b+1)

, we have

|h11|
a�̃a

+a�̃a+1

√
3 p1

M2−1
≥ |h21|

b�̃b
+b�̃b+1

√
3 p2

M2−1
and hence,

(w∗
1, w∗

2) =
(√

3 p1
M2−1

,
(b�̃a

+b�̃a+1)|h11|
(a�̃a

+a�̃a+1)|h21|
√

3 p1
M−1

)
and else

we have (w∗
1, w∗

2) =
( (a�̃b

+a�̃b+1)|h21|
(b�̃b

+b�̃b+1)|h11|
√

3 p2
M2−1

,
√

3 p2
M2−1

)
.

This completes the proof. �

G. Proof of Theorem 3

1) If |h11| ≤
√

p2√
p1

|h22|, we have |h11||h21| ≤
√

p2√
p1

|h22|
|h21| =√

p2√
p1

(
a|SM−1 |+1

b|SM−1 |+1
+ |h22|

b|SM−1 |+1|h21| ) ≤
√

p2√
p1

(
ak+1
bk+1

+ |h22|
bk+1|h21| )

for k = 1, . . . , |SM−1|. According to Lemma 1,

we have g
( bk

ak
,

bk+1
ak+1

) = bk+1|h11||h22|
ak+1|h21|+|h22|

√
3 p1

M2−1
, for k =

1, . . . , |SM−1|. We also have

max
{ b2|h11||h22|

a2|h21| + |h22|
√

3 p1

M2 − 1
, . . . ,

b|SM−1|+1|h11||h22|
a|SM−1|+1|h21| + |h22|

√
3 p1

M2 − 1

}

= |h11|
√

3 p1

M2 − 1
,

with (w∗
1 , w∗

2) = (
√

3 p1
M2−1

, |h11||h22|
√

3 p1
M2−1

).

2) If |h11||h21| ∈
√

p2√
p1

( a�4+1

b�4+1
+ |h22|

b�4+1|h21| ,
a�4
b�4

+ |h22|
b�4 |h21|

)
for �4 =

1, . . . , |SM−1|.
Then, according to Lemma 1, we have g

( bk
ak

,
bk+1
ak+1

) =
bk+1|h11||h22|

ak+1|h21|+|h22|
√

3 p1
M2−1

, for k = 1, . . . , �4 −1 and g
( bk

ak
,

bk+1
ak+1

) =
|h22|

√
3 p2

M2−1
for k = �4, . . . , |SM−1|.

g
(bk

ak
,

bk+1

ak+1

)

=

⎧
⎪⎪⎨
⎪⎪⎩

bk+1|h11||h22|
ak+1|h21| + |h22|

√
3 p1

M2 − 1
for k = 1, . . . , �4 − 1,

|h22|
√

3 p2

M2 − 1
for k = �4, . . . , |SM−1|.

Then, we have,

max
{ b2|h11||h22|

a2|h21| + |h22|
√

3 p1

M2 − 1
, . . . ,

b�4|h11||h22|
a�4 |h21| + |h22|

√
3 p1

M2 − 1
, |h22|

√
3 p2

M2 − 1

}

= max
{ b�4|h11||h22|

a�4|h21| + |h22|
√

3 p1

M2 − 1
, |h22|

√
3 p2

M2 − 1

}
.

As a result, if |h11||h21| ≥
√

p2√
p1

( a�4
b�4

+ |h22|
b�4 |h21|

)
, then

b�4 |h11||h22|
a�4 |h21|+|h22|

√
3 p1

M2−1
≥ |h22|

√
3 p2

M2−1
and (w∗

1, w∗
2) =

(√ 3 p1
M2−1

,
b�4 |h11|

a�4 |h21|+|h22|
√

3 p1
M2−1

)
. Else, we can attain

(w∗
1, w∗

2) = ( a�4+1|h21|+|h22|
b�4+1|h11|

√
3 p2

M2−1
,
√

3 p2
M2−1

)
. This completes

the proof. �
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